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Design of Hierarchical, Hybrid Systems

Stanford University

Claire J. Tomlin (PI)∗

Stanford University

January 25, 2005

1 Grant summary

This report summarizes the research completed under the grant “Design of Hierarchical Hybrid
Control Systems”, under the DARPA Software Enabled Control (SEC) program, administered by
AFRL under contract F33615-99-C-3014, which was awarded to Stanford University over the period
10/15/99 to 01/31/05. The total amount awarded was $3,048,809. The Principle Investigators for
this grant were Professors Claire Tomlin (PI) and Stephen Boyd (Co-PI).

The four pillars of the Stanford SEC program were:

1. design and development of innovative mathematical methods for control of networks of com-
plex systems;

2. design and development of a computational tool for (close to) real-time verification of complex,
hybrid systems;

3. design and development of the embedded avionics for each aircraft in a fleet of two small Un-
manned Air Vehicles (the Stanford DragonFly UAVs), and the coordination and cooperation
of this development with the Boeing OCP developers;

4. the implementation and testing of the hybrid system reachability tool, and the control algo-
rithms for networks of complex systems, on the Stanford DragonFly UAVs, and on the Boeing
Capstone Demonstration Platform.

2 Personnel

Over the course of the grant, the personnel supported were:

∗Associate Professor, Aeronautics and Astronautics, and, by courtesy, of Electrical Engineering
tomlin@stanford.edu, (phone) 650-723-5164, (fax) 650-723-3738, Durand 250, Stanford CA, 94305-4035.
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Faculty: Claire Tomlin (Aero/Astro), Stephen Boyd (EE), David Dill (CS), and Zohar Manna
(CS).

Postdoctoral Research Associates: Haitham Hindi (EE, now at PARC, Palo Alto); Dusan
Stipanovic (Aero/Astro, now Assistant Professor, University of Illinois at Urbana Champaign);
Henny Sipma (CS); Mikael Johansson (EE, now Assistant Professor, KTH Stockholm); Jung Soon
Jang (Aero/Astro).

Graduate students: Ian Mitchell (now Assistant Professor, UBC); Michael Colon (CS); Gokhan
Inalhan (Aero/Astro, now postdoctoral researcher, MIT); Inseok Hwang (Aero/Astro, now Assis-
tant Professor, Purdue); Jung Soon Jang (Aero/Astro); Meeko Oishi (ME, now postdoctoral re-
searcher, NEON); Lin Xiao (Aero/Astro, now postdoctoral researcher, Caltech); Alexandre Bayen
(Aero/Astro, now Assistant Professor, Berkeley).

3 Research Area 1: Controlling systems over networks

The continuing drop in prices for data networks and computers has created a strong drive to let
control system components communicate over a shared communication link rather than using sep-
arate dedicated communication channels. However, the presence of a communication network in
the control loop complicates the control design. Communication over a shared medium introduces
varying time delays, occasional loss of data and even the possibility of link failures. Traditional
control theory gives little support for dealing with the these uncertainties, and an understanding
of the issues in networked control systems has just recently started to emerge. So far, the research
on networked control systems has been exclusively devoted to single-byte data transfer. Today,
however, transfer times are usually a negligible part of the communication delay and most network
protocols allow us to send several bytes of data at no extra cost. This makes it interesting to
investigate how multiple-byte transfers can be exploited to improve system performance and ro-
bustness to varying time-delays, occasional loss of data, and possible link failures. We have derived
optimal controllers and estimators for packet-oriented communication, and shown that in situations
with varying time delays, they perform better than approaches that use single-byte data transfer,
without incurring any additional load on the communication network [1].

Now, consider jointly allocating communication resources and designing a linear control system in
order to optimize system performance. This problem is in general not convex, but can be solved
heuristically in a way that exploits the special structure of the communication resource allocation
problems. Numerical examples show that our approach of jointly optimizing both the system and
communication resources can have very significant benefits over the traditional approach [2].

Finally, having established the SRRA framework with theoretical channel capacity functions in
previous work, we have moved one step further to solve the SRRA problem with practical fading
wireless channels. We showed that the joint optimization of data routing, resource allocation and
power control over fading states can be efficiently solved by convex optimization techniques, which
opens the door for practical application of the SRRA framework. We also extended the SRRA
framework to heterogeneous networks, where wired and wireless networks with different media
access schemes are connected together to facilitate ubiquitous data communication. Our SRRA
framework can be extended naturally to handle such complex systems.
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4 Research Area 2: Computing Reachable Sets for Hybrid Sys-
tems

The hybrid systems framework provides an appealing means for verifying the safety of dynamical
systems. We address safety verification as a reachability problem: Given an unsafe subset of the
system state space and an initial state, is the former reachable from the latter? If it is reachable
despite any controllable actions that we can take then the system is provably unsafe.

The continuous-time nonlinear dynamics of the system need to be considered in assessing reach-
ability. Our formulation requires the solution of a Hamilton-Jacobi partial differential equation,
and a grid-based numerical solution approach based on level set methods is used for this purpose.
Simulation examples are presented for three flight management applications: two-aircraft colli-
sion avoidance, the related problem of conflict resolution, and ensuring safety during final landing
approach.

The exact reachability computation is prey to the curse of dimensionality: its computational com-
plexity is exponential with respect to the continuous dimension. We also developed alternative
approaches, which are based on over-approximating the reachable set of states with a polyhedron.
This is also computationally intractable since the propagation of the system’s dynamics will result
in a potentially unlimited number of constraints (faces of the polyhedron), but we have developed
a novel technique for identifying and pruning redundant and irrelevant constraints. This technique
promises to be computationally feasible for very high dimensional problems. The basis of the
approach is the computation of the maximum volume ellipsoid contained in a polyhedron, a com-
putation that can be formulated as a convex optimization problem (for which global and efficient
algorithms are available).

4.1 Introduction

For about the past ten years, researchers in the traditionally distinct fields of control theory and
computer science verification have proposed models, and verification and controller synthesis tech-
niques for complex, safety critical systems. The area of hybrid systems theory studies systems which
involve the interaction of discrete event and continuous time dynamics, and provides an effective
modeling framework for complex continuous systems with large numbers of operating modes. Ex-
amples include continuous systems controlled by a discrete logic such as the autopilot modes for
controlling an aircraft, systems of many interacting processes such as air or ground transportation
systems in which discrete dynamics are used to model the coordination protocols among processes,
or continuous systems which have a phased operation, such as biological cell growth and division.

The current and potential impact of hybrid systems lies in the confluence of computational methods
from control theory and from formal methods in computer science verification. In the examples
mentioned above, the system dynamics are complex enough that traditional analysis and control
methods based solely on differential equations are not computationally feasible; analysis based
solely on discrete event dynamics ignores critical system behavior. Our interest lies in developing
computational tools for analyzing and controlling the behavior of hybrid systems; our eventual
goal is to develop a real-time tool to provide online verification that a hybrid system satisfies its
specified behavior. This goal addresses one of the central themes of Software Enabled Control, in
which we seek a systematic methodology for the design, validation, and implementation of control
software.
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In our work, the system specification that we are most interested in is that of system safety, which
asks the question: Is a potentially unsafe configuration of the system reachable from an initial
configuration? More important for control theory, given a set of desired configurations, it is crucial
to be able to design the hybrid system control inputs to achieve these configurations. Previous work
in this area had focused on hybrid systems with very simple continuous dynamic equations (such as
clocks, or linear decoupled systems). Our research has three components: the problem formulation
for computing exact reachable sets of hybrid systems and the design of a software tool to perform
such calculations; the development of an algorithm for computing overapproximations of reachable
sets which works efficiently in high dimensions; the design of a real-time aircraft testbed for these
algorithms. We will focus on the first component in this report, we briefly outline our work in the
second.

4.2 Hybrid System Model

The main difference between our hybrid system model and leading models in the literature (see for
example the work of Alur and Henzinger [3] on linear hybrid automata) is that we include accurate,
nonlinear models of the hybrid system continuous dynamics. The model and algorithm have been
developed jointly with Lygeros and Sastry, full details are presented in [4].

A hybrid automaton is a finite state machine with discrete states {q1, q2, . . . , qk}, in which each
discrete state has associated continuous dynamics ẋ = f(qi, x, ν), with x ∈ R

n, and continuous
inputs and disturbances ν = (u, d), where u ∈ U and d ∈ D.

Definition 1 (Hybrid Automaton). A hybrid automaton H is a collection

H = (Q, X,Σ, V, Init, f, Inv, R)

where

• Q ∪ X is the set of state variables, with Q a finite set of discrete states, and X = R
n;

• Σ = Σ1 ∪ Σ2 is a finite collection of discrete input variables, where Σ1 is the set of discrete
control inputs, and Σ2 is the set of discrete disturbance inputs;

• V = U ∪ D is the set of continuous input variables, where U is the set of continuous control
inputs, and D is the set of continuous disturbance or uncontrollable inputs; we denote the
spaces of input (disturbance) trajectories as the sets of piecewise continuous functions U (D
respectively), which take values in U (D respectively);

• Init ⊆ Q × X is a set of initial states;

• f : Q × X × V → TX is a vector field describing the evolution of x for each q ∈ Q; f is
assumed to be globally Lipschitz in X (for fixed q ∈ Q) and continuous in V ;

• Inv ⊆ Q × X × Σ × V is called an invariant, and defines combinations of states and inputs
for which continuous evolution is allowed;

• R : Q × X × Σ × V → 2Q×X is a reset relation, which encodes the discrete transitions of the
hybrid automaton.
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We refer to (q, x) ∈ Q×X as the state of H and to ((σ1, σ2), (u, d)) ∈ Σ×V as the input of H. The
control actions (σ1, u) model those inputs over which the designer has control, and the disturbance
actions (σ2, d) model inputs over which the designer has no control, such as uncertainties in the
actions or behaviors of the other aircraft in the system. We assume that the designer has complete
knowledge of the bounds on these disturbance actions (Σ2, D).

Associated to the hybrid automaton H is a specification which describes the condition one would
like the system to satisfy. Our work has been motivated by verification and synthesis for safety
critical applications, and as such we have been primarily interested in safety specifications. These
specifications are encoded as subsets of the state space of the hybrid system: the set G0 ⊆ Q × X
is that subset which is defined a priori to be unsafe. The problem specification is therefore to keep
the system state outside of the unsafe set.

4.3 Exact Reach Set Computation using Level Sets

In this section, we describe the development of a general purpose tool for exact reachable set
computation—the core of which is a new variant of a “local level set” algorithm that efficiently
computes an accurate representation of the reachable set boundary. We demonstrate on an example
the numerical convergence of our computation by analyzing the results as the continuous state space
grid is made finer, a standard method of validation for scientific computing codes. In this way, we
show that high accuracy can be achieved at the cost of increased computational time and space.
We illustrate our tool on a single mode aircraft conflict resolution example [5, 6], a three mode
conflict resolution example, as well as an example of a six mode commercial aircraft auto-lander
[7], which exhibits nondeterminism and cycles in its discrete behavior.

Our motivation for this component of the research stems from the belief that for many applications
of hybrid systems, it is important to be able to accurately represent the reachable set. We have
dealt primarily in the safety verification of avionic systems, where accurate representation of the
safe region of operation translates into the ability to operate the system closer to the boundaries
of that region, at a higher performance level than previously allowed. For very high dimensional
state spaces, additional logic (such as projection operators) or new techniques (such as the convex
overapproximations of the next section) will be needed; however, our results in this paper show that
it is feasible to do exacting computation for hybrid systems with nonlinear continuous dynamics
in three continuous state dimensions and six discrete modes, and we believe it will be feasible to
extend this up to five continuous dimensions and large numbers of discrete modes.

4.4 Reachability for Hybrid Systems

In this section we summarize the general framework for handling the interaction between discrete
and continuous dynamics (following [4]).

Fundamentally, reachability analysis in discrete, continuous or hybrid systems seeks to partition
states into two categories: those that can reach a given target set, and those that cannot. We will
label these two sets of states G and E = Gc respectively (the symbol G has been used traditionally to
represent unsafe sets, E is used as a symbol for “escape” sets). Any inputs to the hybrid automata
are assumed to lie in bounded sets and to have the goal of locally maximizing or minimizing
the reachable set: at each iteration, the reachability algorithm chooses values for inputs ξG that
maximize the size of G and values for inputs ξE that minimize the size of G (and hence maximize the
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Figure 1: Iterative Reachability Algorithm: Showing detail of iteration for discrete mode j at
iteration i.

size of E). Any nondeterminism in the transition relation is also utilized to consistently maximize
or minimize G, depending on the goal of the reachability computation. For hybrid automata, the
discrete inputs σ and continuous inputs ν can be assigned to the two categories ξG = (σG, νG) and
ξE = (σE, νE) according to whether they seek to maximize or minimize G. For example, for our
hybrid system model with control actions (σ1, u) and disturbance actions (σ2, d), we would have
that ξG = (σG, νG) = (σ2, d), and ξE = (σE, νE) = (σ1, u).

The reachability computation follows an iterative, two stage algorithm shown graphically in Fig-
ure 1. The outer iteration computes reachability over the discrete switches, producing iterates Gi

and Ei at iteration i = 0,−1,−2, . . . , where a negative index is used to indicate that the algorithm
is initialized with a target set and run backward to compute those states which can reach the target
set. The inner iteration runs a separate continuous reachability problem in each of the discrete
modes j = 1, 2, . . .K to compute the estimates G

j
i and E

j
i . We define the “switch” sets

• ~Gj
i contains all states in mode j from which a discrete transition to a state in Gi−1 (typically

a state in another mode) can be forced to occur through the application of a discrete input
σG; these states will be defined by the invariant of mode j and the guards of the transitions
from mode j.

• ~Ej
i contains all states from which a discrete transition to a state in Ei−1 can be forced to occur

through the application of a discrete input σE; these states are also defined by the invariant
of mode j and the guards of transitions from mode j.

Then the goal of the continuous reachability tool is to identify the “flow” sets

• G̃
j
i (t) contains states from which for all νE there exists νG that will force the resulting trajectory

to flow into G
j
i−1 ∪ ~Gj

i within time t.

• Ẽ
j
i (t) contains states from which there exists νE that for all νG will force the resulting trajec-

tories to flow into ~Ej
i within time t or to stay outside of G

j
i−1 ∪ ~Gj

i for at least time t.

Note that in some problems the order of the existential and universal quantifiers in the definition

6



above must be reversed. Given these sets,

G
j
i = lim

t→∞
G̃

j
i (t), Gi =

K⋃

j=1

G
j
i , G = lim

i→∞
Gi,

E
j
i = lim

t→∞
Ẽ

j
i (t), Ei =

K⋃

j=1

E
j
i , E = lim

i→∞
Ei,

where G
j
0 is the set of initial conditions of the reachability problem and E

j
0 = (Gj

0)
c. Simple

modifications of this algorithm suffice to solve finite time reachability problems.

The procedure described above, developed in [4, 6], was motivated by the work of [8, 9] for reach-
ability computation and controller synthesis on timed automata, and that of [10] for controller
synthesis on linear hybrid automata. In that development the reachability problem’s objective was
to determine E—the largest controllable invariant subset of the state space—by computing the set
of states G which were reachable in backwards time from the set of predefined unsafe states. In
terms of the definitions above, control inputs from this problem lie in ξE and disturbance inputs in
ξG. For safety, any model nondeterminism would be used to maximize the unsafe set G.

4.5 Continuous Reachability using Level Sets

While practical algorithms for computing discrete reachability over many thousands of states have
been designed and implemented, determination of continuous reachability for even low dimensional
systems is still an open problem. The continuous portion of a hybrid reachability problem requires
methods of performing four key operations on sets: unions, intersections, tests of equality, and
evolution according to the discrete mode’s continuous flow field. The choice of representation for
sets dictates the complexity and accuracy of these operations; consequently, continuous reachability
algorithms can be classified according to how they represent sets.

For our exact representation scheme, we characterize the set being tracked implicitly by defining
a “level set function” J(x, t) throughout the continuous state space which is negative inside the
set, zero on its boundary, and positive outside, and which encodes the initial data in J(x, 0). The
intersection of two such sets is simply the maximum of their level set functions at each point in state
space, and the union is the minimum; a variety of easily implemented equality tests are possible.
Evolution of a level set under a nonlinear flow field is governed by the Hamilton-Jacobi (HJ) partial
differential equation (PDE) (see, for example, [5])

−∂J(x, t)

∂t
= min{0, max

νmin

min
νmax

f(x, νmin, νmax)
T∇J(x, t)},

= min{0, H(x,∇J(x, t))} (1)

where νmin are those continuous inputs trying to minimize the size of the set being tracked, and
νmax are those inputs trying to maximize its size. The order of the optimization must be chosen
appropriately for the situation. The first minimization on the right hand side of (1) ensures that
the set can only grow (states that are unsafe cannot become safe at a future time). That the
subzero level sets of the viscosity solution of (1) yields the correct reachable set, is proved in
[11]. The implicit representation has a number of advantages when compared with the explicit
representations that other researchers are pursuing, including a conceptually simple representation
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of very general sets and a size which is independent of the complexity of the set (although it
grows exponentially with dimension). In addition, a set of sophisticated numerical techniques to
accurately solve PDEs may be drawn upon for computation. In the remainder of this section,
we focus on the representation (1), and assume that the modeler can compute the appropriate
optimization over inputs in (1) if given x and ∇J(x, t).

The HJ PDE (1) is well known to have complex behavior. Even with smooth initial data J(x, 0)
and continuous Hamiltonian H(x,∇J), the solution J(x, t) can develop discontinuous derivatives
in finite time; consequently, classical infinite time solutions to the PDE are generally not possible.
In the quest for a unique weak solution Crandall and Lions introduced the concept of the viscosity
solution [12]. For most problems of interest, finding the analytic viscosity solution is not possible
(see [13] for cases in which it is possible), and so we seek a numerical solution. We approximate the
solution of (1) on a Cartesian grid of nodes. Three terms in the equation must be approximated at
each node, based on the values of the level set function at that node and its neighbors: the gradient
∇J , the Hamiltonian H, and the time derivative ∂J(x,t)

∂t
. We discuss each of these separately.

In each dimension at each grid point there exist both left and right approximations of the gradient
∇J , depending on which neighboring grid points’ values are used in the finite difference calculation.
We label the vector of left approximations ∇J−, the vector of right approximations ∇J+, and will
see below that ∇J−, ∇J+ or some combination of the two will be used to compute the numerical
Hamiltonian Ĥ. The accuracy of a derivative approximation is measured in terms of the order of
its local truncation error; an order p method has error ‖∇J − ∇J±‖ = O(∆xp). At the current
time, we have implemented the basic first order accurate approximation for speed and a weighted,
essentially non-oscillatory fifth order accurate approximation for high fidelity. We have chosen to
use the well studied Lax-Friedrichs numerical Hamiltonian approximation Ĥ [14]

Ĥ(x,∇J−,∇J+) = H(x, ∇J−+∇J+

2 ) − 1
2αT (∇J+ −∇J−), (2)

where H(x,∇J) is given by (1) and the term containing the vector coefficient α is a high order
numerical dissipation added to damp out spurious oscillations in the solution. The time derivative
of the PDE is handled by the method of lines: the value of the level set function J at each node
is treated as an ODE dJ

dt
= Ĥ, with Ĥ given by (2). General ODE solvers, such as Runge-Kutta

(RK) schemes, can then be applied.

The Hamilton-Jacobi equation (1) describes the evolution of the level set function over all of space.
But we are only interested in its zero level set; thus, we can restrict our computational updates
to nodes near the boundary between positive and negative J(x, t)—an idea variously called “local
level sets” [15] or “narrowbanding” [16]. We have implemented a new variant of this method in our
code. Because the boundary is of one dimension less than the state space, considerable savings are
available for two and three dimensional problems. If the number of nodes in each dimension is n
(proportional to ∆x−1) and the dimension d, the total number of nodes is O(nd); with the restriction
on the timestep necessary for numerical stability, the total computational cost is O(nd+1). With
local level sets, we reduce computational costs back down to O(nd).

4.6 Examples

In this section we present three examples: a validation of our numerical implementation on a
single mode, three dimensional aircraft collision avoidance example (see [6, 5] for details), and
two multimodal examples. Once a method of determining continuous reachability is available, the
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discrete iteration of the algorithm described in Section 4.4 is relatively straightforward. In fact, for
discrete transition graphs with no cycles it is possible to order the continuous reachability problems
such that no discrete iteration is required (the three mode example below). In order to examine the
complications induced by discrete cycles—such as how to avoid zenoness, in what order to execute
the continuous reachability problems, and how to determine which switches are active— we present
an example representing the landing of a civilian airliner.

Numerical Validation of Aircraft Collision Avoidance

This example features a control aircraft trying to avoid collision with a disturbance aircraft, where
both aircraft have fixed and equal altitude, speed and turning radius—they may only choose which
direction they will turn:

ẋr = −vu + vd cos ψr + uyr, ẏr = vd sin ψr − uxr, ψ̇r = d − u,

where vu = vd = 5 are the aircraft speeds, xr and yr are the relative planar location of the aircraft
and ψr is their relative heading. The inputs |u| ≤ 1 and |d| ≤ 1 are the control’s and disturbance’s
respective turn rates. The initial unsafe set J(x, 0) is the interior of the radius five cylinder centered
on the ψr axis. Choosing optimal inputs according to (1) with νG = νmax = d and νE = νmin = u,
we get the optimal Hamiltonian:

H(x, p) = −p1vu + p1vd cos ψr + p2vd sinψr + |p1yr − p2xr − p3| − |p3|.

Using our C++ implementation, grid sizes corresponding to 50, 70, 100, 140, and 200 nodes in
each dimension were tried with a low order accurate scheme (first order space and time, hereafter
referred to as the “(1,1)” scheme) and a high resolution scheme (fifth order space and second order
time, hereafter the “(5,2)” scheme). On the eight million node finest grid—only around 10% of
which is being actively updated on any one timestep by the local level set algorithm—execution
time for the (5,2) scheme was about eighteen hours on a Sun UltraSparc II with lots of memory.
Reducing the grid size in half results in the expected eightfold savings in memory and time; hence,
the coarsest grid takes only fifteen minutes with the (5,2) scheme.

Results are visualized1 by the zero level isosurface of the unsafe reachable set G, shown in Figure 2.
On the left is a head-on view of the (5,2) solution. On the right is a zoomed overhead view of the
point of the bulge computed by the (1,1) scheme for several grid sizes.

We compare solutions on the four coarser grids to the solution on the finest grid, using linear
interpolation on the finest grid if necessary. Figure 3 demonstrates that the scheme is converging
to the finest grid’s solution of (1) at approximately a linear rate in both average error and pointwise
maximum error. We cannot expect to show a higher order convergence rate because of the linear
interpolation used to evaluate the error.

Two conclusions can be drawn from Figures 2 and 3. First, for this example, low order schemes are
not at all competitive in terms of accuracy with the (5,2) scheme: our (5,2) implementation can
produce more accurate results in about fifteen minutes using only the coarsest grid. Second, the
pointwise maximum error of the (5,2) scheme is always less than the grid spacing, so if a 50−1 = 2%
error is tolerable for this application, only this fastest, coarsest grid need ever be run.

1Figure 2 and Figure 8 visualize some level set surfaces as triangular meshes; these are not the meshes on which
the Hamilton-Jacobi PDE was solved, but rather an artifact of three dimensional Matlab visualization techniques.
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Figure 2: Reachable Set for Aircraft Collision Avoidance Example

Three Mode Conflict Resolution

Consider the following conflict resolution problem between two aircraft (i ∈ {1, 2}), which is pre-
sented in [17]. Let (xr, yr, ψr) ∈ R

2 × [−π, π) represent the relative position and orientation of
aircraft 2 with respect to aircraft 1. In terms of the absolute positions and orientations of the two
aircraft, (xi, yi, ψi) for i = 1, 2, it may be verified that xr = cos ψ1(x2 − x1) + sinψ1(y2 − y1), yr =
− sinψ1(x2 − x1) + cos ψ1(y2 − y1), ψr = ψ2 − ψ1, and thus

ẋr = −v1 + v2 cos ψr + ω1yr

ẏr = v2 sinψr − ω1xr (3)

ψ̇r = ω2 − ω1
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Figure 4: Two aircraft in two modes of operation: in the first and third figures, the aircraft follow
a constant heading and velocity (in Mode 1); in the second figure, the aircraft follow a half circle
(in Mode 2).
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Figure 5: In q1 both aircraft follow a straight course, in q2 a half circle, and in q3 both aircraft
return to a straight course.

where vi is the velocity along the body axis of aircraft i, and ωi is the rate of change of heading.
A conflict occurs when a pair of aircraft incur a lateral spacing of less than 5 nautical miles; for
safety of the maneuver, the relative position (xr, yr) must remain outside of the interior of the 5
mile radius disk centered at the origin {(xr, yr, ψr) : x2

r + y2
r ≤ 52}.

Consider the maneuver illustrated in Figure 4, with the protocol of the maneuver defined as follows:
the aircraft are nominally in Mode 1, in which the aircraft fly straight and level with given constant
velocities vi and constant heading ψi; at a certain relative separation distance each aircraft turns to
its right, follows an arc of a circle in Mode 2, in which the velocity is held at a prescribed constant
value vi, until it intersects its original trajectory, then turns to its right and returns to its desired
trajectory. The model allows instantaneous changes in heading which is an obvious abstraction of
the true aircraft dynamics and is treated here in order to clearly illustrate the algorithm; a model
with heading capture dynamics is presented in [17]. In each mode, the continuous dynamics may
be expressed in terms of the relative motion of the two aircraft (3): in Mode 1, ωi = 0 for i = 1, 2
and in Mode 2, ωi = 1 for i = 1, 2. We assume that both aircraft switch modes simultaneously, so
that the relative orientation ψr is constant. This assumption simply allows us to display the state
space in two dimensions, making the results easier to present. The problem statement is therefore:
generate the relative distance between aircraft at which the aircraft may switch safely from Mode
1 to Mode 2, and a turning radius r in Mode 2, to ensure that the 5 nautical mile separation is
maintained.

The dynamics of the maneuver can be encoded by the hybrid automaton of Figure 5, where q1

corresponds to Mode 1 before the maneuver, q2 corresponds to Mode 2 “avoid mode”, and q3
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corresponds to Mode 1 after the avoid maneuver has been completed. There is one discrete control
input σ1, such that the switch from σ1 = 0 to σ1 = 1 triggers the transition from q1 to q2. The
transition from q2 to q3 is required to take place after the aircraft have completed a half circle:
note that with ωi = 1, for i = 1, 2, it takes π time units to complete a half circle. The continuous
state space is augmented with a timer z ∈ R

+ to force this transition. Let x = (xr, yr, ψr, z)T .
At each transition, both aircraft change heading instantaneously by π/2 radians; we represent this
with the standard rotation matrix Rot(π

2 ). As discussed in the previous section, we assume that
v1 is controllable, and v2 is the disturbance input with known bounds. Safety is defined in terms
of the unsafe set:

G0 = {q1, q2, q3} × {x ∈ X : x2
r + y2

r ≤ 52}

which encodes the fact that the two aircraft should never come within 5 nautical miles of each
other.

The solution of the three mode conflict resolution example is presented in Figure 6. Each of the
twelve graphs in Figure 6 is a plot in the (xr, yr) axes, with each of the four rows representing an
iteration of the algorithm, and the three columns corresponding to discrete states q1, q2, and q3.
The computation is initialized with the set G0, which is shown as the dark shaded disks. A fixed
point is reached after three iterations. The dark shaded region in the fourth row, first column of
Figure 6 is the most interesting: it is a plot of the unsafe set of states in q1. As long as the relative
position of aircraft 2 with respect to aircraft 1 is not inside this region, then there exists a control
policy such that the conflict is resolved. If the relative position is inside the unshaded (white)
region, then switching instantaneously will lead to a conflict; the aircraft must remain in q1 until
the relative state enters the light shaded region, then either switch to q2, or remain in q1.

Aircraft landing example

The autopilots of modern jets are highly automated systems which assist the pilot in constructing
and flying four-dimensional trajectories, as well as altering these trajectories online in response to
air traffic control directives. The autopilot typically controls the throttle input and the vertical
and lateral trajectories of the aircraft to automatically perform such functions as: acquiring a
specified altitude and then leveling, holding a specified altitude, acquiring a specified vertical climb
or descend rate, automatic vertical or lateral navigation between specified way points, or holding a
specified throttle value. The combination of these throttle-vertical-lateral modes is referred to as the
flight mode of the aircraft. A typical autopilot has several hundred flight modes – it is interesting
to note that these flight modes were designed to automate the way pilots fly aircraft manually:
by controlling the lateral and vertical states of the aircraft to set points for fixed periods of time,
pilots simplify the complex task of flying an aircraft. Those autopilot functions which are specific to
aircraft landing are among the most safety critical, as it is extremely difficult, if not impossible, for
the pilot to safely take over control of the aircraft when the aircraft is close to the ground. Thus, the
need for automation designs which guarantee safe operation of the aircraft has become paramount.
Testing and simulation may overlook trajectories to unsafe states: “automation surprises” have
been extensively studied [18] after the unsafe situation occurs, and “band-aids” are added to the
design to ensure the same problem does not occur again. We believe that the ability to compute
accurate reachable sets inside the aerodynamic flight envelope under flight mode switching, may
help prevent the occurrence of automation surprises.

A simple point mass model for aircraft vertical navigation is used, which accounts for lift L, drag
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D, thrust T , and gravity mg (see [6] and references therein). State variables are aircraft height z,
horizontal position x, velocity V =

√
ẋ2 + ż2 and flight path angle γ = tan−1( ż

ẋ
). Inputs are thrust

T and angle of attack α, where aircraft pitch θ = γ + α. The equations of motion can be expressed
as follows:

d

dt




V
γ
x
z


 =




1
m

[T cos α − D(α, V ) − mg sin γ]
1

mV
[T sinα + L(α, V ) − mg cos γ]

V cos γ
V sin γ


 (4)

The functions L(α, V ) and D(α, V ) are modeled based on empirical data [19] and Prandtl’s lifting
line theory [20]:

L(α, V ) = 1
2ρSV 2CL(α), D(α, V ) = 1

2ρSV 2CD(α),

where ρ is the density of air, S is wing area, and CL(α) and CD(α) are the dimensionless lift and
drag coefficients.

In determining CL(α) we will follow standard auto-lander design and assume that the aircraft
switches between three fixed flap deflections δ = 0◦, δ = 25◦ and δ = 50◦ (with slats either
extended or retracted), thus constituting a hybrid system with different nonlinear dynamics in
each mode. This model is representative of current aircraft technology; for example, in Airbus
cockpits the pilot uses a lever to select among four predefined flap deflection settings. We assume
a linear form for the lift coefficient CL(α) = hδ + 4.2α, where parameters h0◦ = 0.2, h25◦ = 0.8 and
h50◦ = 1.2 are determined from experimental data for a DC9-30 [19]. The value of α at which the
vehicle stalls decreases with increasing flap deflection: αmax

0◦ = 16◦, αmax
25◦ = 13◦, αmax

50◦ = 11◦; slat
deflection adds 7◦ to the αmax in each mode. The left side of Figure 7 gives a graphical summary
of the possible configurations. The drag coefficient is computed from the lift coefficient as [20]
CD(α) = 0.041 + 0.045C2

L(α) and includes flap deflection, slat extension and gear deployment
corrections. So for a DC9-30 landing at sea level and for all α ∈ [−5◦, αmax

δ ], the lift and drag terms
in (4) are given by

L(α, V ) = 68.6 (hδ + 4.2α)V 2 D(α, V ) = (2.81 + 3.09 (hδ + 4.2α)2)V 2

Flap deflection dynamics model: In reality, the decision to move from one deflection setting to
another can occur at any time, but approximately 10 seconds are required for a 25◦ degree change
in flap deflection. For our preliminary implementation, we have chosen to ignore the continuous
dynamics associated with discrete mode switching, allowing the flaps and slats to move instantly
to their commanded positions. However, if such instantaneous controlled switches were always
enabled then the system would be zeno; therefore, we introduce Delay, or transition modes 0t, 25t
and 50t, which use the envelopes and flight dynamics of the regular modes 0u, 25d and 50d and
include a timer to model the actual delay in flap change (the discrete automaton is shown on the
right side of Figure 7). A regular mode may make a controlled switch to a transition mode, so
flight dynamics can be changed instantly. Transition modes have only a timed switch at t = tdelay,
so controlled switches will be separated by at least tdelay time units and the system is nonzeno. For
the executions shown below, tdelay = 0.5 seconds.

Landing: The aircraft enters its final stage of landing close to 50 feet above ground level ([19, 21]).
Restrictions on the flight path angle, aircraft velocity and touchdown (TD) speed are used to
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determine the initial safe set E0:





z ≤ 0 landing or has landed

V > V stall
δ faster than stall speed

V < V max slower than limit speed

V sin γ ≥ ż0 limited TD speed

γ ≤ 0 monotonic descent

∪





z > 0 aircraft in the air

V > V stall
δ faster than stall speed

V < V max slower than limit speed

γ > −3◦ limited descent flight path

γ ≤ 0 monotonic descent

(5)

We again draw on numerical values for a DC9-30 [19]: stall speeds V stall
0u = 78 m/s, V stall

25d = 61 m/s,
V stall

50d = 58 m/s, maximal touchdown speed ż0 = 0.9144 m/s, and maximal velocity V max = 83
m/s. For passenger comfort, the aircraft’s input range is restricted to T ∈ [0 kN, 160 kN] and
α ∈ [0◦, 10◦].

The interior of the surface shown in the first row of Figure 8 represents E0 for each of the 0u, 25d
and 50d modes. The second row of the figure shows the safe envelope E when there is no mode
switching. Portions of E0 are excluded from E for two reasons. States near z = 0 correspond to low
altitudes and are too close to the ground at steep flight path angles to allow control inputs time to
prevent the plane from crashing. States close to the stall velocity correspond to low speeds where
there is insufficient lift and the flight path angle becomes steeper than that allowed by the flight
envelope. This latter condition holds throughout the very narrow range of speeds allowed in mode
0u, with the result that only post-touchdown states (z ≤ 0) are controllable in this mode. The
third row shows how E can be increased if switches are permitted (for example, mode 0u becomes
completely controllable). Mode 50d is the best to be in for landing and there is no difference in E

with or without switching enabled. The fourth row shows slices of the set in the third row, taken
at z = 3 meters. The light grey regions are unsafe G and the dark grey are safe E. The figure
shows that modes 0u and 25d are safe only because there exists a discrete switch to a safe state in
another mode.

4.7 Overapproximations of Reachable Sets

In the reachable set computation of the previous section, computational complexity introduced
by increasing the dimension of the continuous state is a limiting factor: the technique suffers
from exponential growth with respect to the continuous dimension. To challenge this curse of
dimensionality, we are investigating techniques for computing overapproximations to the reachable
set of states.

In [22], we devise and implement a method based on projecting the reachable set of a high dimen-
sional system into a collection of lower dimensional subspaces where computational costs are much
lower. We formulate a method to evolve the lower dimensional reachable sets such that they are
each an overapproximation of the full reachable set, and thus their intersection will also be an over-
approximation of the reachable set: the method uses a set of lower dimensional Hamilton-Jacobi
PDEs for which, in any projection, the set of disturbance inputs is augmented with the unmodeled
dimensions. For the three dimensional aircraft collision avoidance problem of the previous section,
the result of performing the computation in the (xr, yr) space, and then back-projecting this set
to form a cylindrical overapproximation of the reachable set in three dimensions, is computed in
about 40 seconds.

In addition, we have studied polytopic overapproximations. Here, the main idea is to propagate
a set of supporting hyperplanes of the initial set such that, at any time instant, the bounded
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intersection of these hyperplanes (known as a polytope) includes the reachable set. The faces of
the polytope constitute a level set of the special polytopic level set function. This approach can be
successfully applied to feedback linearizable nonlinear systems, linear dynamic games, and systems
that can be represented as linear systems with norm bounded perturbations [23]. Reduces the
three dimensional collision avoidance problem computation time from 15 minutes (time to compute
exact set) to about 1 second [23]. To the best of our knowledge, the proposed method computes
an over-approximation of the unsafe set faster than any other known method [24].

A second technique is to overapproximate nonlinear dynamics by linear dynamics with bounded
disturbance, and to overapproximate reachable sets by polyhedra. Propagation of sets is then
simply described by the propagation, through linear dynamics, of linear inequalities describing
the polyhedral set. With this technique however, comes the problem of the potentially unlimited
number of inequalities needed to describe the polyhedral estimate. This problem has been addressed
in the literature, yet previous solutions fall short in several ways: exact pruning of polytopes [25]
requires complex data structures to be maintained and the number of “active” hyperplanes could
still be unlimited; the use of simple polyhedral shapes for bounding the polyhedral set [26] is itself
computationally intensive; the ellipsoidal overapproximation to the reachable set [27, 28, 29], while
an elegant and efficient representation of the set, is generally too conservative an overapproximation.

We have developed a technique which combines the efficiency of the ellipsoidal data structure
with the tightness of polyhedral overapproximation. The heart of our technique is a novel pruning
procedure based on the Maximum Volume Ellipsoid (MVE) contained in the polyhedron. The basic
idea of the method is to rank the constraints by their distance (measured in the norm induced by
the ellipsoid) to the center of the MVE, and delete the ones that appear to be least relevant.
Conceptually, constraints that are far away from the center are less relevant than those that are
close. This approach will allow us to perform guaranteed pruning (where only provably redundant
constraints are deleted).

For example, consider a discrete-time linear system (which represents a linear overapproximation
of the nonlinear systems of the previous section):

x(t + 1) = Ax(t) + Bw(t)

where x(t) ∈ R
n is the state vector, w(t) ∈ R

d is a bounded disturbance, and A and B are matrices
with consistent dimensions. We assume that w(t) ∈ W(t) for some bounded convex set W(t).
Assume that x(t) is known to lie in a polyhedron P(t), where P ⊆ R

n is the intersection of a finite
number of half-spaces,

P =
m⋂

i=1

Hi

Using the parameterization of half-spaces introduced above, we can represent P in the form

P = {x | fT
i x ≤ gi, i = 1, . . . , m} ≡ {x | Fx ¹ g} (6)

where ¹ denotes componentwise inequality. Now, an ellipsoid is defined as the image of a unit ball
under an affine transformation

E = {Pu + q | ‖u‖ ≤ 1} (7)

We assume that A is invertible, which is always the case if the dynamics is discretized from some
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continuous-time system, and we propagate the set P(t) through the dynamic matrix A:

AP(t) = {x | fi(t)
T A−1x ≤ gi(t), i = 1, . . . , m(t)}

= {x | F (t)A−1x ≤ g(t)}.

To account for the bounded disturbance, we need to find the polytope AP(t) + BW(t). An easily
computed outer approximation of it is given by

P̃t+1 = {z | fi(t)
T A−1z ≤ gi(t) + ‖fi(t)

T A−1B‖1, i = 1, . . . , m(t)}
= {z | F̃ (t)z ≤ g̃(t)}.

As P evolves through hybrid dynamics, its representation grows in dimension. To limit the com-
putational requirements for storing and operating on P, it is therefore necessary to occasionally
simplify the description of P by dropping, or discarding, constraints. We will call this procedure
polyhedral pruning.

The maximum volume inscribed ellipsoid (MVE)

We are interested in finding the maximum volume ellipsoid that is contained in a polyhedron. Let
E be an ellipsoid of the form (7), and P be a polyhedron parameterized as in (6). Then, E ⊂ P if
and only if

sup
x∈E

fT
i x ≤ gi, i = 1, . . . , m

Using the parameterization of the ellipsoid, this condition can be expressed as

sup
‖u‖2≤1

fT
i Pu + fT

i q ≤ gi, i = 1, . . . , m

Maximization of the left hand side expression gives the equivalent containment condition

‖Pfi‖2 + fT
i q ≤ gi, i = 1, . . . , m

Hence, we can find the MVE inside a polyhedron by solving the convex optimization problem

maximize log detP
subject to P = P T º 0

‖Pfi‖2 + fT
i q ≤ gi, i = 1, . . . , m

This problem follows in the general class of maxdet problems, which can be solved globally and
efficiently using the algorithms described in [30]. Moreover, specialized algorithms for computing
the MVE have been proposed in [31, 32]. The MVE gives an optimal (in terms of volume) ellip-
soidal approximation of the polyhedron. Clearly, the MVE also provides an inner bound on the
polyhedron, since Emve ⊆ P. More surprisingly, perhaps, is that the MVE also provides an outer
bound of the polyhedron: the ellipsoid obtained by scaling the MVE a factor n around its center
is guaranteed to contain the polyhedron:

Emve ⊆ P ⊆ qmve + n(Emve − qmve)

This is a dual result to the celebrated Löwner-John ellipsoid [33, 34] (which treats the minimum
volume ellipsoid that contains a convex set). Thus, the MVE gives a good approximation of a
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polyhedron, and provides simultaneous inner and outer bounds.

Polyhedral pruning using the MVE

The MVE also gives a natural measure for ranking the relevance of the constraints that define P.
For a halfspace Hi = {x | fT

i x ≤ gi}, we define the relevance ranking ηi as the largest factor by
which the ellipsoid can be enlarged and yet still lie within the halfspace:

ηi = max{α | qmve + α(Emve − qmve) ⊆ Hi}

It is easy to verify that the relevance ranking is given by

ηi = (gi − fT
i q)/‖Pfi‖2

This is, in fact, nothing more than the minimum distance from the halfspace to the center of the
ellipsoid in the P 2 metric. The relevance ranking has the following properties:

1. ηi ≥ 1 for all i

2. ηi = 1 ⇒ fT
i x ≤ gi active

3. ηi ≥ n ⇒ fT
i x ≤ gi redundant

We define a constraint to be redundant if the polyhedron P does not change when the constraint
is removed. We will say that the polyhedron is minimal if it does not contain any redundant
constraints, and we will say that a constraint is active if fT

i x? = gi for some x? ∈ P. A constraint
is (strongly) redundant if and only it is inactive for all x ∈ P. The last property allows us to
discard redundant constraints. There is a gray zone ηi ∈ (1, n) for which the relevance ranking
neither proves that a constraint is active nor that it is redundant. In practice, guaranteed pruning
can often be too conservative in that it fails to discard many redundant constraints. We therefore
use the ranking in a heuristic pruning procedure: given P = {x | fT

i x ≤ gi i = 1, . . . , m}, we
compute Emve, sort the inequalities by their relevance ranking, ηi, and keep the k most relevant
(the ones with smallest ηi). This yields an approximate simplified polyhedron P̂, with P ⊆ P̂. We
believe this algorithm to be an effective method for computing fast polyhedral overapproximations
of reachable sets, in very high dimensions.

We have also developed two methods for computing fast overapproximations to reachable sets for
verifying safety properties of continuous and hybrid systems. These approximative methods will
reduce computation times by orders of magnitude, and thus allow us to treat problems of higher
dimension than before.

4.8 Summary

We have presented and numerically validated a tool for determining accurate approximations of
reachable sets for hybrid systems with nonlinear continuous dynamics and adversarial continuous
and discrete inputs. By developing convergent approximations of such complex systems, we will be
better able to synthesize aggressive but safe controllers. As an example, the six mode auto-lander
shows that for envelope protection purposes the safest control decisions are to switch directly to
full flap deflection, but to maintain airspeed until touchdown. With the summary data from the
reachability analysis, such decisions can be made based on local state information; without it the
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auto-lander may not detect that low speeds—while still within the flight envelope—lead inevitably
to unsafe flight path angles. In this arena, we have made real progress on problems in a few
dimensions, where we have close to exact solutions. We show that the computation may be made
faster as we loosen the numerical approximation, however, even with such approximation, these
methods will not scale beyond five or six continuous dimensions.

In response to this problem, we are developing methods that gracefully extend to problems with
a much higher dimension of the continuous state (these methods have been shown to work well
in dimension up to 100). While these are approximate methods, they are, however, non-heuristic:
when they determine that a reachable set does not intersect some other set, the result is certain.

Finally, in order to test our reachability tools, we are designing and building a system of two
Unmanned Aerial Vehicle (UAVs), with on-board sensing, navigation, and control systems enabling
automatic flight. The Stanford DragonFly UAV Project currently consists of two 10-foot wingspan,
fixed wing, unmanned aircraft, each equipped with GPS, inertial sensors, and on-board computers
running QNX Neutrino. These will be described in an ensuing section.

5 Research Areas 3 and 4: Design, Implementation, and Valida-
tion on Stanford DragonFly testbed and on Boeing SEC Plat-
form (F-15, T-33)

In order to validate the algorithms described above, we computed the reachable set for a two-
aircraft conflict, in which one aircraft, the “blunderer”, is assumed to fly into the path of the other
aircraft, the “evader”. Here, we assume that the evader can perform one of only three “emergency
escape maneuvers (EEMs)”: this gives a more conservative reachable set than if the evader were
given full range of maneuvers, yet it provides a realistic and practical test for collision avoidance.
The reachable set, called the “blunder zone”, is computed for the three EEMS: the maneuvers
are shown in Figure 9. This example was motivated by the problems of Closely Spaced Parallel
Approaches (CSPA) of civilian aircraft into airports with closely spaced runways.

5.1 Implementation and Validation

The schematic for the implementation of the new algorithm is shown in Figure 10. The algorithm
runs on the ‘own aircraft’. It takes speed and heading information from both aircraft and computes
the danger zone.

With the position information from both aircraft, it then performs the check of whether the bound-
ary of the danger zone encroaches the position of the own aircraft. If so, it activates the necessary
EEM. During the EEM, speed and heading information of the blundering aircraft will not be
required unless they change beyond the limits expected.

Some issues and considerations regarding the implementation of the algorithm are as follows.

• Communication dropouts: It is reasonable to expect communication dropouts over a
wireless link. The algorithm takes this into account and guarantees safety despite dropouts.

• Simplification: As it is, the danger zone boundary, for the most part, is given in the form
of a series of parameterized explicit analytical expressions (only one case involves a bisection
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search algorithm). To simplify the computation further, a slightly conservative approximation
by a polygon is used, as shown in Figure 11.

Using Microsoft Visual C++ ver 6.0 on a Dell Pentium 3 machine, each computation of this
approximation of the danger zone can run in 0.05 sec.

• Sensor inaccuracy: Sensor inaccuracy is accounted for assuming WAAS-like characteristics.
This is achieved by ‘pushing out’ the sides of the polygon as shown in Figure 11.

• Cockpit display: A cockpit display of the danger zones to the pilot have been developed
by Jennings [35], as shown in Figure 12.

The danger zone computation is based on a 2-dimensional kinematic model which is engineered to
contain realistic aircraft trajectories. These constitute approximate aircraft models. A validation of
the implementation of the algorithm is thus required. Also, it is useful in verifying the algorithm’s
strengths.

The implementation of the algorithm has been validated through 1,106,091 simulations using high
dimensional dynamic aircraft models representing a Piper Saratoga as blunderer and a Cessna
Caravan as evader. This choice of aircraft is because of the collaboration work with Jennings
[35] who performed piloted simulation studies of various displays (including these danger zones)
using these aircraft, although the motivation of the algorithm is towards commercial aircraft. The
simulation is performed in 3-D using non-linear dynamic models whose basic control inputs are
desired bank angle, lift coefficient and thrust. The algorithm is run on-line on the Cessna Caravan.
It computes the danger zone boundary around the Piper Saratoga and checks the Cessna Caravan’s
position with respect to the boundary. Upon encroachment, the Cessna Caravan is made to evade
according to the part of the boundary that encroaches it. The horizontal separation between the
two aircraft at the closest point of approach, together with the result of each run, is recorded.

The objective of the simulation runs is to validate the algorithm with realistic aircraft models
under realistic conditions involving turbulence, sensor noise and ADS(B) drop outs. While in
the simulation it is necessary to choose only a finite number of blunder trajectories, recall that
the analysis considered all blunder trajectories permitted by the model and bounds on control
inputs. The validation approach is adapted from Honeywell’s work [36]. As presented in the
Honeywell approach [36, 37], three metrics are used to evaluate the validation results. They are
the probabilities of

1. Successful Alerts (SA): this refers to events where alerts are given, the EEMs are executed,
and no collisions occur; and if the EEMs were not executed, collisions would have occurred.

2. Unnecessary Alerts (UA): this refers to events where alerts are given, the EEMs are executed,
and no collisions occur; and if the EEMs were not executed, no collision would have occurred
either. If the alert were given because the other aircraft is blundering, the alert will not
be deemed as unnecessary. However, such cases are still categorized as UAs in order to be
consistent with the literature [36, 37].

3. Collision, Given an Alert (CGA): this refers to events where alerts are given, the EEMs are
executed, and yet, collisions occur; and if the EEMs were not executed, no collisions would
have occurred.

The results, together with those of the Honeywell AILS Segmented [36] and MIT Probabilistic [38]
Alerting Algorithms, and the corresponding formulae for the metrics are given in Table 1. In the
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Table 1: Metrics for three algorithms: % of runs.
750ft 1700ft 2500ft

Formula CSPA CSPA MIT CSPA AILS MIT

SA CD+FA

CD+FA+MD+IC+LA
100% 100% 99.5% 100% 99.9% 99.3%

UA IC+FA

CD+FA+MD+IC+LA
98.78% 77.14% 55.5% 69.02% 93.7% 48.7%

CGA IC+LA

CD+FA+IC+LA
0% 0% 0.5% 0% 0.1% 0.7%

table, the acronym CSPA refers to the new algorithm demonstrated in this paper, and is referred to
as the CSPA algorithm, while AILS refers to the Honeywell algorithm and MIT refers to the MIT
algorithm. To compare the results with the other two algorithms, some background is first given.
The Honeywell algorithm is designed for independent approaches with runway spacings of 2500 ft
or greater. Thus, only the results for a runway spacing of 2500 ft are available. The thresholds used
in the Honeywell algorithm to trigger alerts are obtained empirically through simulating a large of
number of parallel approaches with blunders. The thresholds picked are the ones that satisfactorily
prevent collision. It is not stated in the Honeywell paper [36] what ‘satisfactory’ quantitatively
corresponds to. The MIT algorithm, on the other hand, is designed so that the probability of
collision in the event of a blunder is 0.001. This criterion is considered to be the acceptable level
of risk in the Precision Runway Monitor System studies [39].

The CSPA algorithm has 100% SA and 0% CGA whereas both the Honeywell and MIT algorithms
have some Collisions, Given Alerts (CGAs). With regard to Unnecessary Alerts (UA), the CSPA
algorithm has a lower UA rate than the Honeywell algorithm but a higher one than the MIT
algorithm. This latter comparison may appear to be a disadvantage. However, as explained earlier,
alerts in the UA category would be considered necessary when they are raised by blunders that
have the potential to later cause a collision should their trajectories be modified mid-course. This
viewpoint is also expressed by Honeywell in their paper [36]. The blunders that were correctly
rejected (CR) by the CSPA algorithm are those that did not have the potential as yet to cause a
collision. In CSPA, it is more important to ensure that False Alarms (FAs) do not occur during
normal aircraft approaches with normal flight technical error (FTE). With the CSPA algorithm, no
False Alarms will be raised so long as the aircraft maintain their longitudinal separation according
to the MLS.

The MIT algorithm might have produced better SA and CGA results if it were designed for a lower
collision-probability value. However, it must be noted that it still relies on a specified blunder
trajectory set, whereas the CSPA algorithm does not.

In simulation, the new algorithm has been successfully demonstrated to work according to expecta-
tions and is able to guarantee safety as long as the blunder trajectories are captured by the model
and are within the bounds on the control inputs assumed.

5.2 Flight Demonstration

This section describes the flight demonstration of the implementation of the danger zone computa-
tion algorithm on the Stanford DragonFly UAVs and the Boeing testbed of F-15 and T33 aircraft
and discusses the results.
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5.2.1 Dual UAV Demonstration

In this flight demonstrations, DF2 is designated the Own Ship which will run the CSPA algorithm
and conduct the evasive maneuver when required. DF3 is designated the Other Ship which will
blunder in its ‘final approach’. Segment 1 of the Danger Zone is not used. Segment 2 is used in
its place. In the demonstration, both aircraft will conduct the closely spaced parallel approach
autonomously. DF3 will be programmed to blunder in its approach at a certain point. The
algorithm will run on board DF2 and will trigger an EEM according to the danger zone computation.
When triggered to conduct the EEM, DF2 will fly the EEM autonomously.

Prior to the flight demonstration, a ground taxiing demonstration is conducted. For the ground
taxiing demonstration, ground taxiing controllers had to be designed. In addition, a navigation
algorithm which blends GPS measurements with IMU measurements through an Extended Kalman
Filter is designed. The ground taxiing phase is conducted prior to the in-flight phase so that valuable
experience in conducting the demonstration is gained without risking the UAVs in the flight phase.
The benefits of the ground taxiing phase are as follows:

• Testing Software Readiness. The ground taxiing phase tests that the CSPA algorithm, the
server and the client processes can communicate with each other and run simultaneously at
the desired rates. It also shows that the CSPA algorithm has been coded correctly to generate
the results that match the Matlab version of the algorithm.

• Partially Testing System Readiness. This phase also partially checks that the dual UAVs
are ready for operations. This includes checking that the necessary logistics are available for
engine starting, battery charging, refuelling, etc, that the UAVs can be switched between
manual and flight computer control, that the installed sensors work, and that the procedures
for operations run smoothly.

After the ground taxiing demonstration, parameter identification of the flight dynamics of the
aircraft are obtained experimentally and the flight controllers for airspeed hold, heading hold, bank
angle hold, altitude hold, and straight line tracking are designed and flight tested. Thereafter,
the flight demonstration could commence. For the demonstrations, each UAV has a top level
architecture that is shown in Figure 13. Below, the ground taxiing results are first presented
followed by the flight results.

Ground Taxiing Demonstration

Figure 14 shows the demonstration conducted at Moffett Federal Airfield. About 10 runs are made,
each with a different relative start position. In all of the runs, the distance between the two UAVs
at the closest point of approach is greater than the threshold of 8m. The results of two runs are
shown in Figures 15 and 16. In Figure 15, the EEM turns out to be the one associated with
Segment 2 of the danger zone, i.e., acceleration and turn to 45 deg. In Figure 16, the EEM is the
one associated with Segment 3 of the danger zone, i.e., coast and turn to 60 deg. For the former
case, the separation distance between the two UAVs almost exceeded the threshold. This is because
DF3 turned at almost 10 deg/s in the experiment whereas a lower value of 5 deg/s is assumed to be
its maximum turn rate in computing the danger zone. In the latter case, the separation distance
between the two UAVs is above the threshold.
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The completion of the ground demonstration shows that the CSPA algorithm can run on this dual
UAV test bed in real-time.

In-Flight Demonstration

To reiterate, the purpose of the in-flight demonstration is to show that the algorithm can be
implemented and in particular, to demonstrate that it can run in real-time.

Figure 17 shows the demonstration conducted over Moffett Federal Airfield. Over twenty runs
are made with DF3 blundering and DF2 performing the EEM as triggered by the danger zone
computation algorithm. All runs are successful. Sample results are shown in Figure 18. The
former emulates an independent approach scenario where there is no restriction in the longitudinal
spacing between the two aircraft during normal approaches. The latter emulates a dependent
approach scenario.

Note that the separation threshold is not violated. The flight demonstration shows the implemen-
tation of the algorithm and in particular, demonstrates that it can run in real-time.

5.3 SEC Capstone Demonstration

The Stanford algorithm of “dual vehicle conflict resolution” for the Software Enabled Control (SEC)
Capstone demonstration sponsored by DARPA and Boeing was evaluated successfully on the Boeing
Open Control Platform (OCP). The technology is based on the Reachable Set Computation done
by Ian Mitchell and Rodney Teo. The experiment involved two aircraft (F-15 and T-33), where one
aircraft is assigned as pursuer (F-15) and the other as evader (T-33). The flight tests were performed
at Edward Airforce Base in June 2004, and Stanford had six sorties during three flight experiments.
The algorithm demonstrated the guaranteed safety (maintaining a minimum separation distance)
for every single flight test performed (there was a single failure of the algorithm due to an improper
initialization of the OCP).

Figure 19 shows snapshots of a flight experiment displayed on the Experimental Controller Display
installed on both pursuer and evader. As seen in Figure 19(a), as pursuer blunders into the path of
the evader, the algorithm computes the corresponding danger zone based on position and velocity
information of two aircraft, yet the evader does not commence an emergence escape maneuver
(EEM). As the pursuer enters a caution zone (which is 3,000 ft away from the danger zone) as
shown in Figure 19(b), the algorithm alerts the pilot by displaying a warning message as well as
changing the color of the danger zone. Finally, once pursuer touches the danger zone, the algorithm
commences an EEM immediately based on which part of the danger zone the pursuer touches.
Figure 19(d) shows the resulting separation distance between aircraft during this experiment and
it is seen that the minimum separation distance (1 mile) was well maintained.
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[24] I. H. D. M. Stipanović and C. J. Tomlin, “Computation of an over-approximation of the
backward reachable set using subsystem level set functions,” Dynamics of Continuous, Discrete
& Impulsive Systems Series A: Mathematical Analysis, vol. 11, pp. 399–411, 2004.

[25] N. A. Bruinsma and M. Steinbuch, “A fast algorithm to compute the H∞-norm of a transfer
function matrix,” Systems and Control Letters, vol. 14, no. 5, pp. 287–293, 1990.

[26] M. Milanese and G. Belforte, “Estimation theory and uncertainty intervals evaluation in pres-
ence of unknown but bounded errors – linear families of models and estimators,” IEEE Trans-
actions on Automatic Control, vol. 27, no. 2, pp. 408–414, 1982.

[27] F. C. Schweppe, “Recursive state estimation: Unknown but bounded errors and system in-
puts,” IEEE Transactions on Automatic Control, vol. AC-13, no. 1, pp. 22–28, 1968.

[28] H. S. Witsenhausen, “Sets of possible states of linear systems given perturbed observations,”
IEEE Transactions on Automatic Control, vol. 13, pp. 556–558, 1968.

[29] N. Shishido and C. J. Tomlin, “Ellipsoidal approximations of reachable sets for linear games,”
in Proceedings of the IEEE Conference on Decision and Control, (Sydney, Australia), 2000.

24



[30] S.-P. Wu and S. Boyd, sdpsol: A Parser/Solver for Semidefinite Programming and Deter-
minant Maximization Problems with Matrix Structure. User’s Guide, Version Beta. Stanford
University, June 1996.

[31] Y. Nesterov and A. Nemirovsky, Interior-point polynomial methods in convex programming,
vol. 13 of Studies in Applied Mathematics. Philadelphia, PA: SIAM, 1994.

[32] Y. Zhang, “An interior-point algorithm for the maximum-volume ellipsoid problem,” Technical
Report TR98-15, Rice University, Houston, Texas, 1998.

[33] F. John, “Extremum problems with inequalities as subsidiary conditions,” in Fritz John, Col-
lected Papers (J. Moser, ed.), pp. 543–560, Birkhauser, Boston, Massachussetts, 1985.

[34] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Opti-
mization. Algorithms and Combinatorics, New York: Springer-Verlag, 1988.

[35] C. Jennings, Threat Displays for Final Approach. PhD thesis, Department of Aeronautics and
Astronautics, Stanford University, 2003.

[36] M. Jackson, P. Samanant, and C. Haissig, “Analysis of airborne alerting algorithms for closely
spaced parallel approaches,” Air Traffic Control Quarterly, vol. 9, December 2001.

[37] J. K. Kuchar, “Methodology for alerting-system performance evaluation,” Journal of Guid-
ance, Control and Dynamics, vol. 19, pp. 438–444, March-April 1996.

[38] B. Carpenter and J. Kuchar, “Probability-based collision alerting logic for closely-spaced par-
allel approach,” in Proceedings of the AIAA 35th Aerospace Sciences Meeting and Exhibit,
(Reno NV), January 1997. AIAA 97-0222.

[39] E. M. Shank and K. M. Hollister, “A statistical risk assessment model for the precision runway
monitor system,” in Proceedings of the ATCA Conference, 1992.

25



−10 0 10

−10

0

10

in
iti

al

−10 0 10

−10

0

10

−10 0 10

−10

0

10

1 rad/sec angular velocity in q
2

−10 0 10

−10

0

10

ite
ra

tio
n 

1

−10 0 10

−10

0

10

−10 0 10

−10

0

10

−10 0 10

−10

0

10

ite
ra

tio
n 

2

−10 0 10

−10

0

10

−10 0 10

−10

0

10

−10 0 10

−10

0

10

fix
ed

 p
oi

nt

q
1

−10 0 10

−10

0

10

q
3

−10 0 10

−10

0

10

q
2

Figure 6: The rows indicate the iterations of the algorithm, the columns indicate the discrete state.
Each figure displays a projection of part of the unsafe set onto the (xr, yr) axes. A fixed point is
reached after 3 iterations. Angular velocity ωi = 1 in q2.
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Figure 12: Cockpit Displays (for aircraft on the right) showing a normal approach (Courtesy of
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Figure 14: Ground Taxiing Demonstration.
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Figure 15: Ground Taxiing Demonstration: Accelerate, Turn 45 deg EEM.
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Figure 16: Ground Taxiing Demonstration: Coast, Turn 60 deg EEM.
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Figure 17: In-Flight Demonstration.

Figure 18: Flight Demonstration: Independent Approach Scenario.
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(a) Pursuer blunders into the path of evader and
the algorithm computes corresponding danger zone
displayed as blue line segments.

(b) Pursuer enters a caution zone and a warning
message is displayed and the color of the danger
zone turns into yellow.

(c) Pursuer touches the danger zone and the algo-
rithm commences an EEM.

(d) Separation distance between aircraft during the
experiment.

Figure 19: Snap shots of the flight experiment for the Stanford dual vehicle conflict resolution
algorithm on the Boeing SEC Platform (T-33, F-15).
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